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Abstract 

We study the BRST cohomology for two-dimensional supergravity coupled to i: 5 1 

superconformal matter in the conformal gauge. The super-Liouville and superconformal 

matters are represented by free scalar fields 4L and dM and fermions tiL and ,it”, respec- 

tively, with suitable background charges, and these are coupled in such a way that the 

BRST charge is nilpotent. The physical states of the full theory are determined for NS 

and R sectors. It is shown that there are extra states with ghost number lV=p = 0, zlzl 

for discrete momenta other than the degree of freedom corresponding to the “center of 

mass”, and that these are closely related to the “null states” in the minimal models with 

E< 1. 
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1 Introduction 

There has recently been significant progress in attempts to find nonperturbative treat- 

ment of two-dimensional gravity and string theory. In the matrix models, conformal field 

theories with central charges c < 1 are successfully coupled to quantum gravity [l, 2, 31 

and partition functions as well as correlation functions have been computed [4]. In par- 

ticular, it has been found that there are infinite number of extra states at discrete values 

of momenta other than the degree of freedom corresponding to the “center of mass” or 

“tachyon”, but the nature and the role of these states in the theory have not been fully 

understood yet. 

To get more insight into the theory, it is clearly necessary to understand these results 

from the viewpoint of the usual continuum approach to the two-dimensional gravity: the 

Liouville theory [5]. Most of the results in the matrix models have been confirmed in the 

recent study of the Liouville theory [5, 61. In particular, several groups have computed 

correlation functions and partition functions to find again discrete states [7, 8, 9, 10, 111. 

Some attempts to clarify the properties of these states have been made in [12, 13, 14, 151. 

A first step toward full understanding of these states has recently been taken in the 

BRST approach [16, 17, 18, 191. In this approach, physical states are characterized as 

nontrivial cohomology classes of the BRST charge. Indeed, recent compiete analysis of 

the BRST cohomology has revealed that there are nontrivial physical states with ghost 

numbers NFP = 0, &l at special values of momenta, corresponding to the extra states 

found in the matrix models [16, 171. 

On the other hand, little is known for the supersymmetric case except for Marinari 

and Parisi’s proposal for supersymmetric matrix models [20]. The two-dimensional super- 

gravity coupled to E(z ic) 5 1 superconformal matter reduces to coupled super-Liouville 

theory and it correctly reproduces the scaling dimensions [21]. However, no correlation 

functions have been computed and the physical spectrum has not been clarified. In view 

of the potential significance of superstring theory, it is very important to understand 

the physical spectrum in two-dimensional supergravity coupled to E 5 1 superconformal 
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matter. 

The purpose of this paper is to compute the BRST cohomology and identify the 

physical spectrum for such a system. Our computation of the BRST cohomology is quite 

analogous to the bosonic case (16, li’]. One first decomposes the BRST charge [22, 231 

with respect to the ghost zero modes. These are further decomposed according to a 

grading of the Fock space, and we sort out the nontrivial cohomology classes of the 

operator with lowest degree. In the critical superstring [22] as well as in the bosonic 

Liouville theory j16, 171, there is a one-to-one correspondence between this nontrivial 

cohomology and the cohomology of the total BRST charge. It turns out that this is 

not true in general in the super-Liouville theory. We have carefully examined which 

of these nontrivial states can be promoted to the nontrivial cohomology classes of the 

full BRST charge for the Neveu-Schwarz (NS) and Ramond (R) sectors. In this way, 

we show that there are indeed nontrivial physical states for discrete values of momenta, 

corresponding precisely to the “null states” in the minimal superconformal models [24, 

251. The same results are also obtained by using the decoupling mechanism based on the 

quartet structure with respect to the BRST charge. 

In sect. 2, we start by reviewing briefly the super-Liouville theory coupled to t <_ 

1 matter. We use the free field realization with a background charge for the matter 

sector i25, 26, 2’71. We then study the BRST cohomology for the NS sector in sect. 3 and 

for R sector in sect. 4, and identify the extra physical discrete states. Sect. 5 is devoted 

to discussions. In particular, we point out the close relationship of these extra states to 

the “null states” in the E < 1 minimal models. 

2 Super-Liouville theory coupled to 2 5 1 matter 

In this section, we briefly summarize the super-Liouville theory coupled to the E 5 1 mat- 

ter theory for completeness. This also serves to establish OUT notations and conventions. 

In the conformal gauge, the matter and super-Liouville theories can be realized by 
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free superfields eM and GL which contains scalar C#J and fermionic fields 11 

@(8,z) = d(z) - i@b(z) 

with the two-point functions 

(2.1) 

< 4(2)4(w) >= -ln(z -w) , <$(2)$(w) >= A. (2.2) 

For the moment we will suppress the superscripts and describe a free superfield realiza- 

tion, which is applicable to both the matter and gravity sectors. 

The super-stress tensor is given by 

T(B,r) = -;mP~ - iXD3@ 

E ;TF •t OTB (2.3) 

where D s 8s + Ba is the covariant derivative. In terms of the component fields defined 

in eq. (2.1), the stress-energy tensor TB and super-current TF are expressed as 

Ts = -+$)’ - +q - iMPq!l, 

TF = ill&- 2x8$ (2.4) 

which satisfy the N = 1 superconformal 

1 + + - 12X’ or i: = 1 - 8X’. 

The mode expansions are defined by 

operator product with the central charge c = 

(2.51~) 

(2.5b) 

+4(z) = q - i(p - X) In 2 + i C nz-“, 
nj;o n 

$(z) = c q&-‘-t 
7% 

with the commutation relations 

[h,hl = ~L+,,o, [q,p] =i , 

{dJn,hn~ = 6n+m.0 . w4 

In eq. (2.5b), the sum over n is to be taken over half-odd-integers for the NS sector and 

integers for the R sector. 
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The super-Virasoro generators are defined to be the Laurent coefficients of the super- 

stress tensor. In terms of the mode operators, they are given by 

L” = i-J: ‘1,(1,-, : +i C(27n - n) : ?i)n-m$m : +(n + 1)X&., 

G, = c $n-ma, + (27~ + ;;Wn (2.7) 
m 

where cro z p-X. Note that the subscript n to G is half-odd-integer or integer depending 

whether it is for the NS or R sector. 

In the present case of super-Liouville theory with the background charge XL coupled 

to the matter with AM, we have two sets of the above system. The total BRST charge is 

then 

QB = cc-n (L,M t L,L) - ; +, (G,M f G,L) - ; c(n - m) : c-,c-,b,+, : 

;C (;n +m) : c-,r,+mP-m : -a ~wmb-:: (W 
n,m 

where the sum is to be taken such that the subscripts to G,r and p are half-odd-integers 

(integers) for NS (R) case and others are integers. The commutation relations for the 

ghosts are 

(~,,bm) = [~n.Pml = &.+m,o. (2.9) 

The central charges for the matter and super-Liouville systems are given by EM = 

1 -8(X”)’ and tL = 1 - 8(XL)‘, respectively. Requiring that the total central charge add 

up to zero or the BRST charge be nilpotent give tM + EL - 10 = 0 or 

(P)Z + (A”)2 = -1. (2.10) 

Note that the conditions i.M 5 1 and (2.10) mean that AM is real whereas A’ is pure 

imaginary. 

The BRST charge can be decomposed with respect to the ghost zero modes. For the 

NS sector 

QB = do - b&/s + divs (2.11) 
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where’ 

Lo = L,M f L;+ L,G, 

&‘S = c nc-nc, + ; ~-I-F%, 
n#o r 

d NS = zoo-n ( L,” + L;) - ; c (m - n) : c-,,c-,,b,+, : (2.12) 
nm(ntm)#0 

-; Fr-4G,M + G:) + 5 (in + r) : LT.+,,% : --; ,+~+oy&.. 

m 

The nilpotency of QB is equivalent to the following set of identities: 

dLs = MNSLO, [dNs, Lo] = [dNs, it’fNSj = [Lo,J%fNS] = 0 (2.13) 

For our purpose, it is convenient to define a set of generalized momenta 

‘*(,) = $I(PM + d”) + i(pL + nXL)]. (2.14) 

In particular, these give the “lightcone-like” momenta for n = 0 

p* E P*(o) = -+(pM zk ipy. (2.15) 

We also define other lightcone-like variables by 

(2.16) 

which satisfy the commutation relations 

[q*,pF] = i 1 [C&a:] = 77&tm,o , {?Je,~?~ = 67+.,0. (2.17) 

Using these variables, the operators in eq. (2.12) are cast into the form 

Lo=p+p-+C:a+,cy,:+Cr:tlrr,~,;:+Cn:c_,b~:+Cr:P_,y,: 
n#0 + n#0 r 

*In what follows, it is understood that T(, m, take integer values whereas +, II,. take half-odd- 

integers unless otherwise specified. 
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= p-p- + l? (2.18a) 

dm = c CL,,[p+(n)rr, + P-(n)c$] + c : c-,jaI,a,+, + ;(m - n)c-,b,+,] : 
n#0 n.m+ ‘ 

n+m+3 

-g 27 + n) : c-“$,=, $1, : -; CrL[P+(zr)$; + P-(2r)+,,+] 
r 

-; ~7-.($:-,~; + +,,a:) + c(;n + 7) : c-,7,+&v : -; c 7,y.L-. (2.18b) 
n30 r+0#0 r 7 

In writing down eq. (2.1&z), we have subtracted the intercept i which appears in rewriting 

the zero mode part of Lo in terms of p+ and p- using (2.10). This is necessary in order 

to make the BRST charge (2.8) nilpotent [22]. 

Similarly the BRST charge for the R sector is decomposed as 

1 1 
QB = COLO - boMR - Z70F +2&K + dR - qbo7: (2.19) 

where Lo is the same as (2.18a) with all the sum over integers and 

MR = 

F = 

K= 

dR = 

CC=r.c, + $74 
-#a 
P+‘+%’ + P-‘k,+ + ~(zct-f,,~, - $:,,a: - ncdn + 7,b-,) 

n#O 

+<(m - n)c-Amtn - 32m + n)$b:+,$,-,l : 

+ c [+ + m) : c-,-/n+mP-m : --&xJ-,-ml 
“.rnfO 

n+m#O 

In the R sector, there is no subtraction in Lo [22]. Instead, the $ coming from p+p- is 

here absorbed in the normal ordering of the zero modes, as discussed in ref. [23]. The 

nilpotency of QB is rewritten as 

Lo = F’ , da = MALO + KF , 2K = [MR, F] 
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K2 = [L,,, ;MR] = [Lo, F] = [Lo, Kj = [Lo, dR] 

= [MR,K]=[MR,~R]={F,K}={F,~R}={K,~R}=O (2.21) 

The Hilbert space ?f of the full theory is the direct sum 

n = ~,M~,L p@) @ n& @ n(G)) (2.22) 

where 7@) (31;:;)) is the Fock space of matter (Liouville) oscillators acting on a Fock 

vacuum with momentum p”(pL) and ?-lcG) is the ghost Hilbert space. 

The physical state conditions in both sectors are given by 

QB j phys >= 0. (2.23) 

Since in both cases Lo = {b,, QB}, these physical states satisfy 

Lo / phys >= Q&o I phys > (2.24) 

Hence, any physical states are BRST-exact unless they satisfy the on-shell condition 

Lo = 0. 

It is convenient to reduce the zero eigenspace of Lo by restricting to the states anni- 

hilated by b. (and also by ,& in the R sector). In this space the physical state conditions 

(2.23) reduce to 

Lo / phys >= ba 1 phys >= dN$ 1 phys >= 0 

for the NS sector and to 

(2.25) 

F 1 phys >= br, / phys >= PO I phys >= dR I phys >= 0 (2.26) 

for the R sector. Note that the condition LO I phys >= 0 for the R sector is satisfied due 

to the relation Lo = F*. Notice also da = 0 when acting on this space because of the 

relations (2.13) and (2.21). 
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3 Physical states in the NS sector 

In this section, we discuss the relative cohomology (2.25) for the NS sector and identify 

physical states. 

3.1 Cohomology of do 

From the first condition LO I phys >= 0 in (2.25) and (2.18a), we see that this space is 

nontrivial only if p+p- takes a non-positive half-integer or integer value. For p+p- = 0, 

there is a unique state 1 p”,pL >. 

In order to examine the cohomology of dNs, we introduce the degree for the osciila- 

tors [la, 171 as 

deg (&K,~,7,) = il 

deg (G&W,) = -1 (3.1) 

and define the degree of I p”,pL > to be zero. The cohomology operator dNS is then 

decomposed into components with definite degrees: 

divs=do+dl+d,. (3.2) 

Here 

dr, = 1 P+(n)c-,a, 
n#0 

(3.3a) 

& = nm(~m)20 : c-n [&&,+, + ;(m - +-mbmt.] : -; 27-r (&,a, + L,~~) > 
7 

-; 5 (2~ + n) : c-&+,1C11, : + 2 ($ + T) : c-,7,+&~ : -a F+20 -/,-i.b-,-, (3.3b) 

t r 

d, = c P-(n)c-,a; - ; c I’- (2~)7-v$: (3.3c) 
n#0 7 

satisfy in the on-shell subspace 

d; = d; = 0, {d,,d,} = {d,,d,} = 0, d: + {do,da) = 0. (3.4) 
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Note that the argument in P+(Zr) in the second term in (3.3a) is an odd integer. 

Our strategy is first to consider the nontrivial cohomology of & and then examine if it 

can be extended to the cohomology of dNs. In the critical string [18, 221 and the Liouville 

theory coupled to matter [16,17], it has been shown that there is an isomorphism between 

the nontrivial cohomology classes of do and dNs. In our case of the super-Liouville coupled 

to superconformal matters, it turns out that this is no longer true in general. Nevertheless, 

we wilI find it useful to examine the cohomology of do. 

To compute the cohomology of do, we must consider the following two cases: 

I. P+(n) # O,P-(n) # 0 for all integers n # 0. 

II. There exist integers j, k such that P’(j) = P-(k) = 0. 

We will see later that if P’(n) or P-(n) vanishes for some integer at all, the other 

must also vanish at some integer due to the on-shell condition, and hence there is no 

other case than these two. The case II is further devided into four possibilities: (i) even 

j and odd k; (ii) even j and k; (iii) odd j and k; (iv) odd j and even k. 

Let us examine the cohomology of do in each case. 

Case I. P+(n) # 0, P-(n) # 0 for all n # 0 

If we define 
1 

KNS = nTo P+(n) 

2T 
----dbn + c p+@.) 1cI+,P? (3.5) 

the number operator i? may be written as k = {A, KNS}. This implies that any do- 

closed state of nonzero level is do-exact, i.e. cohomologically trivial. Hence the only 

nontrivial cohomology is obtained for 19 = 0, i.e. 

I P”IPL > with p+p- = 0. (3.6) 

which is the state we called the degree of freedom corresponding to the “center of mass”. 

Case II. P+(j) = P-(k) = 0 

Since P*(n) are linear in n, it follows from eq. (2.14) that 

P+(n) = $ (A” + iAL) (n - j) 

P-(m) = -$ (A” - iAL) (m - k) (3.7) 
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In particular, this implies that these are nonzero for other values of n and m. From (3.7) 

we see that 

pip- = P+(O)P-(0) = i [(AM)’ + (A~)‘] jk = -ijk. 

Combined with the on-shell condition, we find the level is given by 

i+= ;jk 

Hence we have either j, k > 0 or j, k < 0. 

(i) Even j and odd k 

(3.8) 

(3.9) 

If we define 
1 

Kj = -;,, P’(n) ---C.bn + T p+(2r) 2r ti,+,Pv (3.10) 

then iqo,j = {do, Kj} is the level operator for all the oscillators except ‘I?~ and c-j (CY; 

and bj) when j, k > 0 (j, k < 0). The cohomology of do is thus constructed from these 

mode operators. It turns out that no such state can satisfy the on-shell condition. If 

j = 2(21+ 1) for some integer I, the level ijk is an odd integer whereas all the available 

mode operators have even levels. If j = 2 .2[, on the other hand, the level is 21k which 

cannot be made from the mode operators CX?,~ and c+l. Hence we conclude that the 

cohomology of do is trivial. 

(ii) Even j and k 

We can define the same level operator as in (i). The nontrivial cohomology of do is 

represented by the states 

(~~j)k’~ / p”,pL > , C-j (Qrj)k’z-l I p”,pL > (3.11) 

forj,k>Oand 

(a;)-“’ lP”,PL > ,bj (aj)-k”-l lpMtpL > (3.12) 

for j, k < 0. By inspection, we see that these are indeed nontrivial cohomology states. 

This is similar to the bosonic case [16, 171. 
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(iii1 Odd i and k 

In this case, we have to modify Kj to 

1 K: = nzj P+(n) -d,b, + (3.13) 

and then fi;,j = {d,,K;} 1~ the level operator except for ~r+j,~-j,*~j,1 and r-j,l 

(~j,bj~$y,~ and Pi/s) when j, k > 0 (j, k < 0). We find that the nontrivial cohomol- 

ogy of do is represented by the states listed below according to their degrees. 

For j, k > 0: 

degree 

k: (7-j/2)kt *Zj/2(Y-j/l)k--lI 

/” /” 

k-l: 

k-2: C-ja+j(7-j/2)k-‘> 
(a!j)2(7-j/2)k-*, 

C-jllrl;./,~“j(7-j/l)k-5, 
~lj/l(“~j)‘(Y-j/l)‘-’ 

/* /* 

. . 

/* /* 

k$i: e-j(a+j)+W~ 7-j/l> 
( 0.fj)(k-')'27- j/l, 

C-jll’lj,l(Q+j)(k-3)‘~, 
$J+j,2(atj)(k-1)‘2 

(3.14) 
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For j, k < 0: 

k: 

. . . 

k--3. 
2 . 

k$: 

@j/2)-', 

"/ 

v/ v/ 
. 

/ J 

(3.15) 

Here the ground state Ip”,p’ > with p+p- = -$k is not exposed explicitly and the 

arrows indicate flows under the action of d .VS to be discussed in the next subsection. We 

thus see that there are many states with various ghost numbers. 

(iv) Odd j and even k 

The number operator is the same as in (iii). The states to span the nontrivial space 

are, however, a little different from the case (iii) in the bottom parts of the tables: 
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For j,k > 0: 

k: 

k-l: 

(Y-j/Z)“r *ltjjZ(Y-j/Z)“-‘, 

P /* 

P /” 

. 

/” 2 

y : c-j(a+j)(k-4)~2(7-j,*)2, 

i 

(Qtj)(k-2)‘Z(7-j,l)2, 

c-j~‘rj,l(a’j)(k-‘)‘z7-jjar 
?Grjjz(afj)(k-2)‘2Y-j/2 

/” /= 
kc. 
2 c-j(a~j)(k-W~, (cztj)k/z 

(3.16) 

For j, k < 0: 

k: (Pjl2)-k, +j/2(Pj/l)-"-', 

v/ / 

k+l: bj(Pj/2)-k-‘, 
aT(Pj/2)-k-2 3 

bj*jla(Pj/z)-k-3, 
$ji2ai(Pj12)-k-3 

/ J 
. . . . . . . . 

“/ / 

*-1. bj(aF)-’ k+4)'2(Oj/2)2, 
(a;)-‘k+“l’(pj,2)‘, 

2 
bj~,ll(crj)-(k+‘)I’pj,l, 

+,j/2(a;)-(k+2)/~flj,2 

Y / 
bj(aj)-(*+W2, (cl;)-k/‘, 

(3.17) 

Here again the ground state is suppressed. 

Finally let us show that we have exhausted all possible cases. Suppose that P+(j) = 0 

but P-(n) # 0 for all nonzero integers n. Owing to the linearity in n, P+(n) is rewritten 
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like eq. (3.7) 

P-(m) = $ (A” - iq (m - a) (3.18) 

but with a being not an integer. This gives us 

p’p- = P+(o)P-(0) = -;ja (3.19) 

which implies that the nontrivial cohomology is possible at the level ija. However, 

as is evident from the above analysis, the only available mode operators for creating 

cohomologica.lly nontrivial states have the level either j or j/2, which cannot give the 

level ija. Therefore there is no nontrivial cohomology of & in this case. The same 

argument excludes the case when P-(k) = 0 but P+(n) # 0. 

3.2 Cohomology of dNs 

In order to construct a state representing nontrivial cohomology of d, ’ we may start 

from a state nontrivial with respect to do and add terms of higher degrees. This is due 

to the following fact. The lowest degree term in a state nontrivial with respect to d may 

be always chosen to represent a nontrivial cohomology of do; or if the cohomology of d, 

is trivial, then the cohomology of d is also trivial. 

The proof is simple [ 171. Suppose that li, = $k + ?I k+, +. represents a cohomology of 

d, where the subscripts k, k + 1,. . . stand for the degrees. Then d@ = 0 means dO$k = 0 

and thus $k = doxk by assumption. If we consider $’ = $ - dxk which also belongs to 

the same cohomology class as $,, the lowest degree term in G’ has degree at least k + I. 

Repeating the same procedure as above, we arrive at $J = d(xk + Xk+l + .), which is 

the desired result. 

Furthermore, if for each ghost number Npp, the cohomology of do is nontrivial for at 

most one fixed degree k independent of N FP, then the nontrivial cohomology classes of 

do and d are isomorphic. We only sketch the proof briefly. (See ref. [17] for the details.) 

‘We suppress the subscript NS to d in what follows since most of the following discussions ax valid 

for dn as well. 
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Let $k be a nontrivial element in the cohomoiogy of do. Then dgk = (d, + d2).+k has 

the lowest degree at least k + 1. Using (3.4), we find do(dl$k) = 0. Since there is no 

nontrivial cohomoiogy at degree k + 1, we get dl?+!?k = doy’k+l. Then d(lClk - x~+~) has 

terms of degree at least k+2, and the use of eq. (3.4) tells us that cZ,,[d($k-xk+l)]k+l = 0. 

Repeating the above procedure, we construct $ c +k - XI+~ - xk+2 - . . such that $ 

is closed under d. Moreover, one can show that this map gives a unique element in d- 

cohomology. Conversely, it can be shown that each element of cohomology of d projects 

onto a unique element of do-cohomology. This completes the proof. 

Since the assumption here is satisfied for cases I and II (i) and (ii), we find nontrivial 

cohomology of d only for ?? = 0 and i jk for even j and k with ghost number NFp = 0, fl. 

In the other cases, the above statement does not apply because there are many nontriv- 

ial cohomology classes of do. In fact, when d acts on the states in the tables (3.14)-(3.17), 

there appear other states of the nontrivial cohomology of do as indicated by the arrows 

in (3.14)-(3.17). For example, for the case (iii) the states transform under the action of 

d as 

C-j(7-j,Z)k-aIPMrPL >+ (Y-j/l)klPM9PL >* O 

c-ja+j(7-j/l)k-‘IPMlPL >+ [F~aZj(7-j/S)kea + ~C-j~‘j,~(7-j/l)k-3]IPM,PL > 

-0 (3.20) 

where we have written only the terms nontrivial in the do-cohomology. It is important 

to note that these states always vanish under the second action of d and that states 

nontrivial with respect to Q are produced only at the next degree and ghost number. 

The first fact is a reflection of the nilpotency of the BRST charge and the second is due 

to the fact that the states are created by the action of dl. If we call the initial states 

“parents” and the resulting states “daughters”, we can check that most of these states 

in the tables are either parents or daughters. 

Now we prove that neither parents nor daughters can give rise to nontrivial cohomol- 

ogy of the total d even if higher degree terms are added. 

To show that the parents do not produce any, assume that we succeed in constructing 
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= state li, = $k + ‘&+I f . such that 

d(?ik + l/)k+l + .'.) = 0 (3.21) 

starting from a parent $,k. Since dO$k = 0, the lowest degree terms in (3.21) give 

d1ti.k + &&+l = 0. (3.22) 

According to (3.4), &(&$k) = -dld& = 0 and thus we get 

dl'tb = 'lk+l+ &Xk+l (3.23) 

where nk+l denote a state nontrivial with respect to ds. (From parents, states corre- 

sponding to nontrivial cohomology classes of do are always produced by the action of d,.) 

But if we substitute (3.23) into (3.22), we obtain 

‘7kt.l = -‘&(Xk+l + ‘$k+l) (3.24) 

in contradiction to the fact that nk+r is nontrivial. Therefore the parents are excluded. 

Let us next consider a daughter state, nk+r, obtained from a parent state, $kr as given 

in (3.23). This relation can be rewritten as 

d(‘h - Xk+d = Vk+l + [-dlxkt1 t d&k] - &Xk+l (3.25) 

Thus we obtain a d-trivial state by adding degree k + 2 and k + 3 terms to nk+r. Let 

US write this aS 7Jk+1+ q>. Suppose that there is a d-nontrivial state with Tk+l as the 

lowest degree term and write it as nk+r f 7:. We may take a representative of the same 

cohomology class as 

qktl + ‘l; - d(‘h - xk+l) (3.26) 

However this does not contain qk+i. Thus there is no nontrivial cohomology class rep- 

resented by a state with nk+i as the lowest degree term. Hence the above statement is 

proved. 

Using the above results, we can discard all the parents and daughters for constructing 

the cohomology of d. In particular, for case II (iv) all the states are either parents or 
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daughters. We find that the only exceptions are 

~+j,z(a’j)(k-1)‘21pMrpL >, 

[(~~~j)(~-~)“7-j,z - j(k - l)C-j~_+j,l(“~j)‘k(-3”z~ ]p”,pL > (3.27) 

for odd j, k > 0 and 

$jl?(q)-’ k+WllpMtpL >, 

[(cx;)-(~+‘)/~/?,,, - ~bj~ilz(aj)-(‘+3)/a]/P.W,PL > (3.28) 

for odd j,k < 0. The linear combinations are singled out by the requirement that they 

are neither parents nor daughters. 

It can be shown that these states can be promoted to the cohomology of d by adding 

higher degree terms by a procedure described before for do-nontrivial states. It is also 

easy to see that l/)k - xk+i - Xk+r -. . . thus constructed is not trivial. (If we assume that 

it is trivial, it leads to a contradiction that $k is do-trivial.) 

To summarize, we have found that there are nontrivial states for pfp- = 0 and for 

p+p- = -4jk with j - k= even. In the latter case, the states can be constructed from 

those in eqs. (3.11) and (3.12) f or even j and k, and from those in eqs. (3.27) and (3.28) 

for odd j and k. 

3.3 Quartet mechanism 

In the previous subsections we have examined the nontrivial cohomology classes for dNs. 

We have encountered quite a different situation from the bosonic case where there is a one- 

to-one correspondence between the cohomologies of ds and d,vs, and yet have succeeded 

in identifying the nontrivial classes of dNs. Here we will give an alternative derivation of 

this result by showing that the states, which are found to be d-trivial but da-nontrivial 

in the previous subsection, actually fall into the so-called BRST quartet representations 

and hence decouple from the system [28]. Although the final results are the same as 

in the previous subsection, we believe that this reformulation shows the essence of the 

decoupling mechanism of the states and also it is more accessible to physicists. Since the 
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other cases are essentially the same, let us consider the NS sector with both j and k odd 

integers. 

The Fock vacuum is the direct product of the vacua for the matter, Liouville and 

ghost systems 

lp”,pL >= IPM > @lpL > 810 >gh 

From the conditions P+(j) = P-(k) = 0, we find the momenta are given as 

(3.29) 

+ kt?) = t$; + X”,L (3.30) 

where ty = -AM F iAL, ti = -XL f iXM and t$;‘; s +tlL + Ft?“. Thus the 

vacuum in (3.29) may also be labelled by these integers as l(j, k) >. 

Let us first observe the following pattern in the do-nontrivial states in (3.14) and 

(3.15). 

For the momenta satisfying P+(j) = P-(k) = 0 with j, k > 0 

k - (21 + 1) k - (21+ 2) k - (21+ 3) 

k-Z [k-(21+1)> 

Ik - (21+ 2) >+ 
k-Z-1 *+ 

Ik-(21+2) >- ** 

k-l-2 lk - (2Z+ 3) > 

and for P+(-j) = P-(-k) = 0 with j, k > 0 

(3.31) 

-k + (Xl+ 1) -k + (21+ 2) -k + (2r + 3) 

-k+l I-k+(22+1)> 
(3.32) 

-k+Z+l ** 
I---+(21+2)>+ ** 

( - k + (21+ 2) >- 

-k-+1+2 ( - k + (2Z+ 3) > 

Here we have defined the states by 

lk - (21+ 1) > s ~j(~~j)‘~+j,r(~-j,~)k-(‘i’l)~(j,k) >, 
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lk - (21 + 2) >* E [-~(a’j)‘t1(y_j,2)*-(z~+z) 

z!c 
l+1. 
~~~-j(~fj)‘~~j~~(7-j~~)k-(2’f3)]l(j~ k) >, 

!k - (21+ 3) > E ~~j(~~~)‘fl(~_j~~)k-‘z~“‘~(j, k) >, 

I - k + (2’ + 1) > c jl+l(l ,‘,f/~“,, _ l)!(~Ij)‘?bIj,~(Pj,~)k-(*‘tl’l(-j~ -k) >, 

I-k+(21+2)>* = 
(-l)‘+’ 

jr+*(Z + l)!(k - 21 - 2)! 
[-2(crIj)‘+‘(P-j,l)k-(Z’fz) 

T(k - 21 - 2)b-j(aIj)‘~Sj,l(P-j,~)k-‘9113’]i(-j, -k) >, 

i-k$(21+3)> 5 
(-l)‘+’ 

+‘(l + l)!(k - 21 - 4)! 

Xb~j(~~~)“‘(~_j~~)k-‘2’+4’~(-j, -k) > (3.33) 

In the tables 1 runs from -1 to y and the double asterisks mean that there are other 

states for adjacent values of 1. (It is to be understood that when the power of the mode 

operators becomes negative, there is no corresponding state.) 

The proper inner product is to be defined, in an abbreviated forms, as 

<O,O’>~(O~--p , -pL >)‘PcoO’Ip”,pL > (3.34) 

where P, a parity operator [25], changes the signs of the oscillators including zero modes 

in the matter sector. It is important to note that the inner product in (3.34) respects 

the hermitidty of the Virasoro generators 

PL:(PL)P = L-,(mL). (3.35) 

In the following, we will show that there are two sets of quartets associated with the 

states listed in eqs. (3.31) and (3.32). 

As we have already seen in simple examples in eq.(3.20), the states are transformed 

under the action of dNS as 

dNyslk - (21+ 3) > = Ik - (2Z+ 2) >+ +d,,xk-(Z’fZ) 

3As discussed in ref. [13], there is another possibility to define an inner product when 2 = 1. Here we 

adopt the convention defined in the text. 
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G ok-(21+2)>;, 

dNSIk - (21+ 2) >- = lk - (21 t 1) > +doxk-(a’+l) 

z lk-(21+-l)>‘. (3.36) 

Note that the terms other than &-nontrivial states may be written in do-exact forms, 

denoted as dox’-(“+‘) and d,,xk-(Z’f’). These parent and daughter states in (3.36) form 

the doublet representations of the BRST charge. For the states in eq. (3.32), we find 

similar relations 

d,vsJ - k t (21 t 1) > = 1 - k c (21 + 2) >+ +dox-L+l’+l, 

= I-k+(21+2)>!+, 

d,vsI - k + (21 t 2) >- = i - k + (21 + 3) > +dox-k+*ff3 

c I-k+(2lt3)>‘. (3.37) 

For the following discussion, it is important to realize that the states in eq. (3.33) 

have nonvanishing inner products 

- < -k + (21 t 3)l’colk - (21 + 3) >=-< -k + (21 + 2)lc,,jk - (21 t 2) >;= 1. (3.38) 

where we have used the relation P(a;)‘P = -a?, and P($:)‘P = -($$,). Note also 

that the &-exact terms do not contribute to the inner products. 

From eqs. (3.36)-(3.38), we see that those four states in (3.38) form a BRST quartet, 

a pair of doublets with respect to dNS. The quartet mechanism first considered in non- 

abelian gauge theories then tells us that these states decouple from the system [28]. To 

see this, it is enough to note that the projection operator to the states in the quartets in 

eq. (3.38) is given by 

p = {&s, lk+W) > .- < -k+(Zl+Z)lco-I-k+(21+2) >- < k-(21t3)lco} (3.39) 

due to eqs. (3.36)-(3.38). It follows that the quartet appears only in dNs-exact forms 

and all of the four states decouple from the system. One may repeat the same argument 

for the other states in (3.36) and (3.37). 
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It is not difficult to see that most of the states in the tables (3.14)-(3.17) fall into 

quartet representations as illustrated above. The only exceptions are the states in (3.27) 

and (3.28), which therefore contribute to the physical spectrum. 

3.4 Absolute cohomology 

Having identified the relative cohomology, let us make brief comments on the absolute 

cohomology specified by (2.23). 

The difference between (2.23) and the relative cohomology (2.25) is that in the latter 

case we choose a special vacuum ( 1 > annihilated by bo. Hence the absolute cohomology 

is obtained essentially by adding the states built on the other vacuum ( T >S cOl i >. 

Indeed, it is not difficult, following the bosonic case [16, 171, to show that the absolute 

cohomology is isomorphic to the direct product of these two relative cohomologies. 

4 Physical states in the R sector 

In this section, we proceed to the discussion of the relative cohomology (2.26) in the R 

sector. 

Let us first consider the on-shell condition. The Ramond-Dirac operator Fin eq.(2.20) 

contains the zero modes $,’ which are actually two-dimensional gamma matrices. We 

use the following representation: 

a=(; :), ,,=(y ;) (4.1) 

It is then convenient to suppose that j;, the nonzero-mode part of F, is multiplied by qz 

so that it automatica.lly anticommutes with (4.1). Any spinor in this representation can 

be written as 

(4.2) 



where 1.4 > and IB > denote the states spanned by the mode operators and carrying 

momenta. On this state the condition, Flphys >= 0, becomes 

p-IB > +$\A > 
= 0. 

p+lA > -i+3 > 
(4.3) 

The minus sign in the lower column is due to Q. 

Since F’ = Lo = p+p- + l+, eq. (4.3) may be solved as follows. When p- # 0, we 

take an on-shell state JA > (La(A >= 0) and define IB >= -*FIA >. Then we have 

kF;B >= --+‘\A >= p+(A > (4.4) 

Thus the condition (4.3) is satisfied. If pf # 0, we can similarly prepare the state (B > 

and construct a spinor satisfying (4.3). Therefore it is enough to examine if there is 

any nontrivial cohomology of dn satisfying the on-shell condition La = 0, since we can 

always construct on-shell spinors from such states. From now on we will consider only 

the on-shell states. 

The cohomology operator dR is again decomposed as in (3.2): 

dn = do + d, + dZ (4.5) 

where again 

d,, = c P+(n)c-,a, 
n#0 

(4.6) 

The explicit forms of other operators are not necessary except that they satisfy (3.4). 

An important difference from the NS sector is that the argument of P+(2n) is an even 

integer. 

We again have two different cases I and II in sect. 3. Let us first enumerate the 

nontrivial cohomology of do. 

Case I. P+(n) # O,P-(n) # 0 for all n # 0 

In this case we may define 

KR = c L&b, + 
“$I P’(n) 

(4.7) 
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and the number operator 19 is given as N = {do, KR}. Hence the only nontrivial who- 

mology is the same as (3.6): 

Ip”,pL > with pip- = 0. 

Case II. P+(j) = P-(k) = 0 

(4.8) 

Since pfp- = -ijk as in (3.8), we have the level I? = ijk > 0 from the on-shell 

condition Lo = 0, and again we have either j, k > 0 or j, k < 0. 

(i) Even j and odd k 

Similarly to case (iii) in the NS sector, we should define 

1 

Kj = nz,j P’(n) 

2n 

a-nbn + +gi2 P+(2n) *QL 

and the nontrivial cohomoiogy of do is given precisely by the states in (3.14) and (3.15). 

(ii) Even j and k 

We can use the same level operator as in (i). The nontrivial cohomology of do is given 

by the states in (3.16) and (3.17). 

(iii) Odd j and k 

In this case, we can define 

Kj _ C 1a~,b, + C 2n 
n+O.j ‘+Cn) ,-#o P+P) 

*:,A (4.10) 

and the nontrivial cohomology is possible in terms of crTj, c-j (a?, bj) for j, k > O(j, k < 

0). However, we cannot construct states with the level fjk (half-odd-integer) from integer 

mode operators. Thus there is no nontrivial cohomology in this case. 

(iv) Odd j and even k 

The number operator is the same as in (iii) above and the nontrivial cohomology of 

do is given by the space spanned by the states (3.11) and (3.12). 

Again here is no other possible case that could give rise to nontrivial cohomology in 

the R sector. The argument is the same as in the NS case (cf. (3.19)). 

As proved in sect. 3, parents and daughters under the action of dR do not correspond 

to nontrivial cohomology of dR. By studying how these states transform into each other, 
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we find that the nontrivial cohomology of dR is possible only for j - k = odd in case II. 

For even j and odd k, it is constructed from the states given in eqs. (3.27) and (3.28). 

For odd j and even k, the states are obtained from (3.11) and (3.12). 

We thus again find that nontrivial cohomology classes are possible only at levels where 

“null states” in the minimai models with ? < 1 exist [25]. We wilI discuss why this is so 

in the next section. 

The absolute cohomology is again obtained by considering the vacua of the ghost zero 

modes. For the b - c ghost, this is essentially the same as NS case. The vacua for the 

bosonic ghosts p - +y are infinitely degenerate and we expect this leads to infinite number 

of such spaces corresponding to these degrees of freedom. 

5 Discussions 

Using the cohomological terms, we have examined the nontrivial states allowed in the 

physical state conditions (2.25) and (2.26) for all the cases in the NS and R sectors. 

Remarkably we have found, apart from the ground state lp”,pL > with p+p- = 0, there 

exist nontrivial states at levels 19 = ijk and the discrete values of momenta (3.30) with 

p+p- = -fjk . These states exist only for j - k = even (odd) in the NS (R) sector. 

These are precisely the values of momenta at which special states with respect to the 

Virasoro algebras appear in the Fock spaces of free fields with background charges [25, 

261. Let us discuss why this happens. We consider the bosonic case for simplicity of 

presentation since the structure of the cohomology states is essentially the same for the 

bosonic and supersymmetric cases as we have seen in this paper. We must remember 

that in the bosonic case the extra states are present at levels N = jk. 

Let us first recall some properties of free field realization of a conformal field theory 

(the matter or gravity sector). An important quantity for our argument is the C-matrix 

considered in ref. [25], relating the complete sets of states spanned by the Virasoro 
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generators and the boson oscillators. At level N it is defined by 

L-‘(X)lt + x >= CCr&l(p,X)a-Jlt + A > 
J 

(5.1) 

where it + X > is a Fock vacuum with the momentum t + X, and L-‘(X) and & stand 

for all the independent combinations of the Virasoro generators and oscillators at level 

N, respectively. Thus I and J run from 1 to P(N), the partition number of the integer 

N. It has been shown in ref. [25] that the C-matrix satisfies 

det[C(t + X,X)] = const. x jgo (t - t(-j,-k))P(N-jk), 
l&N 

det[C(t + A, -A)] = const. x Jo (t - t(j,h))P(N-jk). 
I<jk<N 

(5.2~) 

(5.2b) 

The first equation tells us that for particular values of t = t(-j,-lr)r there are states at 

the level jk in the Fock space which cannot be constructed by the Virasoro generators; 

there are linear combinations of the states generated by LvJ which identically vanish. 

At the zeros of (5.2b), we find primary states (“null states” for c < 1) at the same level 

jk, which may be constructed by the singular vertex operators [25]. We note that the 

vanishing conditions of (5.2a) and (5.2b) coincide with each other for c = 1(X = 0). 

Let us also note a general feature of the BRST formalism. In sect. 3.3, we discussed 

the quartet mechanism, where the doublets appeared in pairs. Suppose a state /G + 1 > 

with a ghost number G + 1 is generated from 1G > by the action of the BRST charge 

QB: 

QslG >= IG + 1 >, QBIG + 1 >= 0. (5.3) 

Then there must be a state I - G - 1 > which has a nonzero inner product with (G + 1 >; 

otherwise IG + 1 > does not appear in the theory as poles in Green functions. A state 

/ - G > defined by the sequence 

Q&G-l>=]-G>, Qe/-G>=O (5.4) 

then has a noneero inner product with IG > since 

< -‘%lG >=< -G - lIQm(G >= - < -G - IlglG + 1 > = pl. (5.5) 
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Therefore the BRST-doublets always appear in pairs. One can prove that these quartets 

do not contribute to the physical spectrum, as in subsection 3.3. 

Combining the properties described in the last paragraphs, we may understand the 

origin of discrete states. The idea is as follows. Suppose that we have a quartet satisfying 

(5.3)(5.5). Let us assume that in the relation (5.4) the momenta for both matter and 

gravity sectors take the values at the zeros of (5.23~). Then one can choose a state 

/ - G - 1 > at the level jk such that the vanishing combinations of Virasoro generators 

appear in / - G >. The state / - G > vanishes because it is multiplied by a coefficient 

which has a zero at the particular values of momenta. We may find a Fock state from 

j - G > by dividing out the coefficient (See the examples given below). These two states 

no longer belong to a BRST-doublet and do not necessarily decouple from the physical 

spectrum; both 1 - G - 1 > and 1 - G > (or precisely speaking, the corresponding Fock 

states) are in Ker Qe. In order to find them in the physical spectrum, there must be 

states which have nonzero inner products with them. From the quartet structure in our 

formulation, 1G > and /G + 1 > must be these states. From the consistency with (5.5), 

we expect (G > contains the inverse of the vanishing coefficient. Furthermore we will see 

that IG > is essentially a primary state corresponding to a zero of (5.2b). This is to be 

expected because. any state constructed from the primary states both in the matter and 

gravity sectors is in Ker QB since QB contains only Virasoro generators for the matter 

and gravity. We will explain this point further in our examples. 

Let us study examples at levels one and two. In order to see how physical states emerge 

from the quartet structure, we start from general momenta and later put them to the 

values of interest. To do this, we should first note that the momenta p”IL = t”J + XM,L 

and AM,’ must satisfy two constraints from the nilpotency of the BRST charge and the 

on-shell condition 

-;[(x”l)z + (XL)‘] = 1, 

I? + +f + AM)’ + ;(P + XL)* = 0. (5.6) 

26 



At level one IV = 1. we have the relations 

QiA$ + A > = [L'?l(XM) + L,4,(xL)]lt + x > 

= t"(a!l T g,),t + x > (5.7) 

Qe[tM(l + (;)')]-'(al: + $&1,1 - (t + A) ' 

= -c-1/ - (t + A) > (5.8) 

where we have denoted the vacua with momenta t + X by 

It +x >E (P + AM >M c+ + XL >L 810 >gh . (5.9) 

Note that the states in (5.7) and (5.8) h ave the opposite momenta to give the ncmzero 

inner product (see the definition in (3.34)). W e note that for general momenta the four 

states form a quartet. Let us now choose the momenta tM close to a zero in (5.2a): 

tM = to,,-,) + c = c. (5.10) 

From the relation (5.6) tL is determined; we choose a solution so that tL = tf-,,-,) for 

p = p (--1,--1). The ratio P/t“ in (5.7) and (5.8) then takes a finite value 

tL 
- = -$ + O(E). 
tM 

(5.11) 

Now it is easy to see that the quartet decomposes into singlets when E = 0, in a manner 

we explained earlier. Note that the Fock states with N=p = 0 in (5.7) and (5.8) contain 

only matter oscillators for A* = 0 (c = l), a general feature discussed in refs.113, 171. 

We have emphasized the importance of the vanishing combinations of Virasoro gen- 

erators on the particular momentum states. Here let us point out that they are closely 

related to the “null states” corresponding to the zeros in (5.2b). In general, the states 

which have nonzero inner products must have opposite momenta. In fact, the state in 

(5.6) has opposite momenta tg,,) and tt;,,) to those of the state in (5.7), tici,,-,) and 

tf-,3-l), owing to the relation t(j,k) + X = -t(-j,-k) - A. These opposite momenta pre- 

cisely correspond to zeros in (5.2b) w h ere we find primary states, which actually give rise 

to the state on the LHS of (5.8). 
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At level two, one can observe the same phenomena. We report only the result for 

AM - 0. We take the momenta close to the relevant zeros at t = t(-,,-,) and t = t(-z,-l): 

E E tM - p (-1,-2) or tM - t$+,). 

Expanding the states with respect to t and X”(- 0), we find the quartet structure 

Q&z + b-l(A”L?l + AL&)]It + x > 

z.Y 1 + (ty)z 

1 + (ty)a 4e =F A(eJ] + O(e,X”))It +A > (5.12) 

and 

1 + (t?)’ 

QB GE( 1 + (t3/2) 
m?a + ~(dQ2] + O(c,X”)}I - (t + A) > 

= + f vG,a-,) + O(E,P)]I - (t + A) > (5.13) 

for the choice of the solution tL = -& + O(c,X”), where the upper (lower) sign is for 

+-x,-q (t(-l,-,)). The coefficients in (5.12) are given by 

AM.= = - (5.14) 

where the upper (lower) sign is for matter (gravity) sector. From (5.12) and (5.13), we 

again observe the decomposition of a quartet into singlets at level two. On the LHS of 

(5.13) we find the primary states corresponding to the zeros tM = t(l,z),t(l,l) of (5.2b).4 

The coefficients given in (5.14) may be used for general c. So one may find the similar 

structure for any c, starting from the state on the LHS of (5.12). 

It is known that Npp = 0 discrete states are classified according to SU(2) generated 

by J dz : e*;Jj+ : and J dzi~9~ (4 is the scalar field for the matter). From the “quartet” 

structure, we expect that NFP # 0 discrete states form SU(2) multiplets as well. Let us 

study our examples whether this is the case for cM = l(XM = 0). The state CY~J(~, 1) > 

on the RHS of (5.7) is a state in the triplet representation, while on the LHS we find 

a singlet. In (5.12) and (5.13), we find two states in the quartet consisting of matter 

‘Comparison with (2.95) of [25] may be useful. 
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oscillators and the doublet of ghost modes. These examples suggest the general pattern: 

r in iV~p = 0 goes into r - 2 in NFP f 0 under the action of QB. 

The extension of all the above discussions to supersymmetric case is straightforward, 

and the origin of the extra physical states may be explained by the same reasoning. 

Returning to the supersymmetric case, we have found extra physical states with ghost 

numbers NFP = 0,&l. We can actually construct these states for NFP = 0 as an 

extension of the bosonic case [13]: 

(wo+)jl(o,i + k) >M @l(j + k,O) >L 810 >ghr 

(W)jI(i + k 0) >M al(o, -j - rc) >L @lo >sh 

where 

w* - 0 - I &*,.) 

zz 
I 

2 : tr$M(z)eit*gM(z) : 

(5.15) 

(5.16) 

are the charge screening operators with t* = ztl for S = 1. The matter part of the above 

states are obtained by the use of the so-called singular vertex operators [25]. 

To see that these states are in the physical spectrum, we first note that they are 

in Ker QB since W,” commute with Qe and the rest of the states satisfy the on-shell 

condition. They cannot be in Im QB since it can be shown that they have nonzero 

inner product by using the algebra satisfied by W,’ and a proper definition of the inner 

product [13]. 

Similarly to the bosonic case, the operators in (5.16), together with J,,(z) = iad( 

satisfy an SU(2)-like current algebra 

w(t+,e)W(t-,w) - - l - --h(w), 

Jo(%)W(t+,w) - 
!“I-“” z--‘uI 

--W(b,w). 
z-w 

The above discrete states therefore form multiplets with respect to the global algebra 

satisfied by the zero modes of the currents. 
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